Why octo-core, and where will it end?

February 6, 2013

    processor CPU graphic

    Those who like to follow hardware will have no-doubt noticed the increasing prevalence of quad-core processors in top of the line products, and it looks like the trend is set to continue with the introduction of octo-core processors later this year.

    We’ve already had our first snippets of information about Samsung’s new Exynos 5 Octa processor, which will come in an eight-core variety. Then there’s also Nvidia’s Tegra 4, which sports an overwhelming 72 core GPU on top of a five core CPU.

    Is there any end in sight to this exponential growth in core numbers, and is it even the solution we really need to pump up the performance of our portable devices? Well, that’s what I’m here to discuss.

    Where did this trend originate from?

    If you can recall back to the turn of the millennium and Intel’s introduction of the Pentium 4 processor, you’ll probably remember that even these decade old PCs were commonly clocked up above 3Ghz. Fast forward to today’s modern PCs and you’ll still find that even the most expensive Intel i7 doesn’t venture beyond the 4Ghz wall without some tinkering and customized cooling solutions.

    The problem is that processors hit the wall, in terms of clock speed, a decade ago, and in the search for ever faster computing solutions we’ve had to turn to multiple cores.

    Samsung-Exynos-5-Dual

    Looking more specifically at recent portable computing solutions, it’s obviously important that the device is power efficient and that remains relatively cool. Higher clock speeds not only require more power, but also churn out more heat, which can’t be cooled particularly well when you want your smartphone to only be 1cm thick.

    This is where multi-core processors provide the perfect solution, a good balance of power and heat, but also allowing you bypass the performance problems associated with lower clock speeds. This is because each CPU core can run at lower frequency and voltage, compared with a single core chip, whilst maintaining performance.

    What’s the maximum number of cores?

    Now that we’ve established that running two cores side by side solves the problems of low performance in smartphone and tablet devices, similarly, you could argue that continuing to increase the number of cores for parallel processing would overcome any speed bottleneck. However this is where the multi-core solution starts to look less impressive, as there are diminishing returns as the number of cores increases.

    Nvidia Tegra4's die, showing each of the 72 GPU and 5 CPU cores.

    Nvidia Tegra 4′s die, showing each of the 72 GPU and 5 CPU cores.

    Firstly there’s the problem of wasted clock cycles, instructions need to finish at the same time otherwise you’re processor will be wasting energy. In order to utilize every clock cycle on a quad or octo-core processor efficiently, a software developer needs to optimize their application to sync parallel processing, but this ads time and costs to software production. In some cases applications simply aren’t very demanding anyway, so your cores are just going to sit there using battery.

    One solution to this is to clock down the processor’s speed when the cores aren’t being utilized fully. But more powerful chips require a higher minimum amount of energy than slower processors, even whilst idling, which still causes wastage.

    Then you also have to consider bandwidth constraints, in other words how much data can we feed to multiple processors at any one time. Once the bandwidth is reached you can’t push any more data through, regardless of the number of cores available. This limits the real world performance improvements of multi-core over single core processor speeds, you’ll find that other bits and pieces of hardware bottleneck the rest of your system.

    So whilst theoretically you could add more and more cores, it doesn’t necessarily allow you to push more data through at once. And when you’re not using them, multiple cores can be a massive power drain.

    The 8 core myth

    Taking all of that technological jargon on board, it seems like there are certainly limitations when it comes to multi-core systems. But we’ve heard so many mixed messages from manufacturers over the years it’s hard to tell who to believe. Intel for example talked of hundreds of processor cores back in 2011, and Nvidia seem certain that GPGPUs are the future. However, Qualcomm remains adamant that a few cores with higher clocks are the best solution. So who’s right?

    Well rather than listen to the cheap talk, when we actually look at processor specs you’ll notice something quite interesting — 8 core ground breaking performance is actually a bit of a myth, at least for now.

    Take Samsung’s new Exynos 5 Octa processor for example. Although it’s called an octo-core processor, all eight cores aren’t working in tandem as you might think. Instead there are two sets of quad-cores, a set of powerful ARM Cortex A15′s and a set of low power ARM Cortex A7′s, only one of which can be used at any one time. An elegant solution for the power efficiency problem I mentioned earlier.

    Whilst this allows the chip to be more economical, by switching to the faster power hungry cores only when needed, there’s no performance benefit over a standard ARM Cortex A15 quad core chipset. Nvidia’s Tegra processors work in a similar way, using a single low power core for low-intensity tasks and the quad-core only when needed.

    ARM big.LITTLE technology shows the truth behind the Exynos 5 Octa. Side by side quad-cores, not a true octo-core.

    ARM big.LITTLE technology shows the truth behind the Exynos 5 Octa. Side by side quad-cores, not a true octo-core.

    As another example, take a look at the PC market for the past five years. The number of cores hasn’t ventured above four in mainstream or high-end gaming products, despite the fact that a Q6600 is now over five years old. If you take a look at the only full 8 core product in the consumer market, the AMD FX-8 range, it actually performs poorly compared to better designed Intel quad-core processors. Even Intel’s new Haswell chips aren’t increasing the number of cores available; the PC market has clearly reached a plateau.

    So why is it such a struggle to push past four cores, well it all lies in the nuts and bolts, it’s down to transistors. Either way you look at it, a fast single-core or slower multi-core processor has to be made up of increasing numbers of transistors, and more transistors means more heat and more power consumption.

    Problem 101 with handheld devices, there’s only a limited amount of battery power and no room for cooling. So it’s doubtful that a fast, real eight core chip is a viable solution on smartphones or tablets, at least in the immediate future.

    Looking to the future

    Don’t misunderstand me though, the Exynos 5 Octa is an incredibly good idea for handheld devices, and is a decent indicator of what processors are likely to look like in the future.

    It’s doubtful that the next improvements in processor technology are going to come from simply slapping 16 cores together on one chip. Even Nvidia’s boastful sounding 72 core GPU isn’t ground breaking. High end graphics cards contain thousands of stream processors, or cores as Nvidia likes to call them.

    ARM bigLITTLE

    Instead it’s more likely that we will see companies look for more efficient ways to run their processors, continuing to reduce the die size of their chips to save on heat, and looking to ingenious solutions, like interchangeable cores, in order to conserve power where they can.

    Whilst we will certainly see more eight core processors in the future, they are unlikely to be multi-core chips in the current understanding.

    To sum up

    As strange as it seems ,we aren’t actually venturing off into the realms of infinity any time soon, technology isn’t quite moving forward as fast as the marketing hype would have you believe. We are probably going to need another technological breakthrough and a change in both hardware and software developer mindsets before we see huge numbers of real cores become the norm.

    Even so, you can expect that “8-core” will be the marketing buzz word throughout 2013 and 2014 when it comes to smartphones and tablets. A better term would probably be “dual quad-core”, but I suppose that would be a little confusing.

    As always, beware of product marketing, they love to let consumers misinterpret their words.

    Comments

    • wheineman

      You mean when that Best Buy sales rep in the early 2000′s tried to sell me a PC because it was 300mhz faster, he was wrong?!?! Shame on him!

      The current “core wars” is really just the next incarnation of the old “mhz wars”. And if you will remember, Intel quickly shot to the top of that by releasing faster and faster chips. But the ‘slower’ AMD chips always performed better for me!

      BTW, good summation of the technology. I have not seen it all brought together like that elsewhere!

    • Evan Wickes

      i’m looking forward to chips this year but a53/a57 big.LITTLE is in the works for next next gen chipsets. that looks mind-bottling.

    • John

      Great explanation. Simple and clear. Thanks for enlightening us!

    • Les D

      Looking at Nvidia’s and Samsung’s keynote at CES, I think the challenge for mobile is High Dynamic Range 4K video … of cats! In real time. That’s about 10 times what Tegra 4 can do. So, that big.Little A53/A57 quad core doesn’t seem so mind boggling in that case.

      That is what’s really going on. Samsung put forward some startling statistics during its keynote; I think it was something like 40 hours of video uploaded to Youtube every minute, and billions of pictures uploaded to Facebook every day – mostly of cats, and most of it badly lit.

      All this amazing technology is aimed at letting us share better quality candid videos of our pets.

    • http://twitter.com/Cabeson Cabeson

      Nice explanation of octo-core. The article had a lot of “whilst”s.

    • Ivan Budiutama

      good reading, thanks for the very thorough article.

    • ixid

      You are incorrect to state that the cores in big.Little cannot be used simultaneously. An octa-core big.Little could do more than a quad-core A15. Read page 7 of the ARM big.Little white paper about the MP mode which can use all cores. http://www.arm.com/files/downloads/big.LITTLE_Final.pdf

    • jamie

      nice review

    • dze

      Very good articles…. I totally agree the phone and tablet is hit it plateau with quad-core. It’s nice to have more core but software technology need to catch on too.

    • http://Nepallica.com Pretush

      does the Android supports multi-core efficiently ? and what about the apps can they use those multi-core cpu efficiently.

    • BrainOfSweden

      This dual-quad is a good strategy since it might provide users with the same battery efficiency/performance that for example nVidia Optimus does when switching between GPUs. I honestly don’t think we need more than 4 cores though, if powerful enough, 2 would suffice, especially if they have multithreading. For the battery saving part, 4+1 that we see in Tegra is good enough.
      GPUs are a completely different story though, and I say add more cores, never stop with that. The Tegra 4 GPU will have 72 cores, and that can power some serious gameplay, but it can still get a lot better, and now that we see a lot of gaming oriented devices, the GPUs need to get more powerful, and the CPUs too, they don’t need more cores, use the ones you have more efficiently instead.

    • Craig

      This is the most clueless and incoherent crap I’ve read all week.

    Popular

    Latest